Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38605589

RESUMO

BACKGROUND: MAPT is a causative gene in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), a hereditary degenerative disease with various clinical manifestations, including progressive supranuclear palsy, corticobasal syndrome, Parkinson's disease, and frontotemporal dementia. OBJECTIVES: To analyze genetically, biochemically, and pathologically multiple members of two families who exhibited various phenotypes of the disease. METHODS: Genetic analysis included linkage analysis, homozygosity haplotyping, and exome sequencing. We conducted tau protein microtubule polymerization assay, heparin-induced tau aggregation, and western blotting with brain lysate from an autopsy case. We also evaluated abnormal tau aggregation by using anti-tau antibody and PM-PBB3. RESULTS: We identified a variant, c.896_897insACA, p.K298_H299insQ, in the MAPT gene of affected patients. Similar to previous reports, most patients presented with atypical parkinsonism. Biochemical analysis revealed that the mutant tau protein had a reduced ability to polymerize microtubules and formed abnormal fibrous aggregates. Pathological study revealed frontotemporal lobe atrophy, midbrain atrophy, depigmentation of the substantia nigra, and four-repeat tau-positive inclusions in the hippocampus, brainstem, and spinal cord neurons. The inclusion bodies also stained positively with PM-PBB3. CONCLUSIONS: This study confirmed that the insACA mutation caused FTDP-17. The affected patients showed symptoms resembling Parkinson's disease initially and symptoms of progressive supranuclear palsy later. Despite the initial clinical diagnosis of frontotemporal dementia in the autopsy case, the spread of lesions could explain the process of progressive supranuclear palsy. The study of more cases in the future will help clarify the common pathogenesis of MAPT mutations or specific pathogeneses of each mutation.

2.
Sci Rep ; 14(1): 7129, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531908

RESUMO

Cognitive dysfunction, especially memory impairment, is a typical clinical feature of long-term symptoms caused by repetitive mild traumatic brain injury (rmTBI). The current study aims to investigate the relationship between regional brain atrophy and cognitive impairments in retired athletes with a long history of rmTBI. Overall, 27 retired athletes with a history of rmTBI (18 boxers, 3 kickboxers, 2 wrestlers, and 4 others; rmTBI group) and 23 age/sex-matched healthy participants (control group) were enrolled. MPRAGE on 3 T MRI was acquired and segmented. The TBV and TBV-adjusted regional brain volumes were compared between groups, and the relationship between the neuropsychological test scores and the regional brain volumes were evaluated. Total brain volume (TBV) and regional brain volumes of the mammillary bodies (MBs), hippocampi, amygdalae, thalami, caudate nuclei, and corpus callosum (CC) were estimated using the SPM12 and ITK-SNAP tools. In the rmTBI group, the regional brain volume/TBV ratio (rmTBI vs. control group, Mann-Whitney U test, p < 0.05) underwent partial correlation analysis, adjusting for age and sex, to assess its connection with neuropsychological test results. Compared with the control group, the rmTBI group showed significantly lower the MBs volume/TBV ratio (0.13 ± 0.05 vs. 0.19 ± 0.03 × 10-3, p < 0.001). The MBs volume/TBV ratio correlated with visual memory, as assessed, respectively, by the Rey-Osterrieth Complex Figure test delayed recall (ρ = 0.62, p < 0.001). In conclusion, retired athletes with rmTBI have MB atrophy, potentially contributing to memory impairment linked to the Papez circuit disconnection.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Humanos , Corpos Mamilares , Encéfalo , Transtornos da Memória/etiologia , Atletas/psicologia , Lesões Encefálicas Traumáticas/complicações
3.
Brain Commun ; 6(2): fcae075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510212

RESUMO

Frontotemporal dementia refers to a group of neurodegenerative disorders with diverse clinical and neuropathological features. In vivo neuropathological assessments of frontotemporal dementia at an individual level have hitherto not been successful. In this study, we aim to classify patients with frontotemporal dementia based on topologies of tau protein aggregates captured by PET with 18F-florzolotau (aka 18F-APN-1607 and 18F-PM-PBB3), which allows high-contrast imaging of diverse tau fibrils in Alzheimer's disease as well as in non-Alzheimer's disease tauopathies. Twenty-six patients with frontotemporal dementia, 15 with behavioural variant frontotemporal dementia and 11 with other frontotemporal dementia phenotypes, and 20 age- and sex-matched healthy controls were included in this study. They underwent PET imaging of amyloid and tau depositions with 11C-PiB and 18F-florzolotau, respectively. By combining visual and quantitative analyses of PET images, the patients with behavioural variant frontotemporal dementia were classified into the following subgroups: (i) predominant tau accumulations in frontotemporal and frontolimbic cortices resembling three-repeat tauopathies (n = 3), (ii) predominant tau accumulations in posterior cortical and subcortical structures indicative of four-repeat tauopathies (n = 4); (iii) amyloid and tau accumulations consistent with Alzheimer's disease (n = 4); and (iv) no overt amyloid and tau pathologies (n = 4). Despite these distinctions, clinical symptoms and localizations of brain atrophy did not significantly differ among the identified behavioural variant frontotemporal dementia subgroups. The patients with other frontotemporal dementia phenotypes were also classified into similar subgroups. The results suggest that PET with 18F-florzolotau potentially allows the classification of each individual with frontotemporal dementia on a neuropathological basis, which might not be possible by symptomatic and volumetric assessments.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38301869

RESUMO

OBJECTIVE: Ischaemia-reperfusion (I/R) injury is a severe post-operative complication that triggers an inflammatory response and causes severe damage. Hydrogen gas has anti-oxidant and anti-apoptotic properties and has been shown to be safe in humans. The study aimed to investigate whether hydrogen gas protects against skeletal muscle I/R injury. METHODS: Experimental basic research using mice. A total of 160 eight to 10 week old albino laboratory bred strain of house mice (25.8 ± 0.68 g) were used in this study. The mice were cable tied to the hindlimb under anaesthesia and then placed in an anaesthesia box filled with air and 2% isoflurane (control group); 80 mice were additionally subjected to 1.3% hydrogen gas in this mix (hydrogen group). After two hours, the cable ties were removed to initiate reperfusion, and hydrogen inhalation lasted for six hours in the hydrogen group. After six hours, the mice were taken out of the box and kept in cages under standard conditions until time for observation at 16 different time points after reperfusion: zero, two, four, six, eight, and 10 hours and one, two, three, four, five, six, seven, 14, 21, and 28 days. Five mice were sacrificed using excess anaesthesia at each time point, and the bilateral hindlimb tissues were harvested. The inflammatory effects of the I/R injury were assessed by evaluating serum interleukin-6 concentrations using enzyme linked immunosorbent assay, as well as histological and immunohistochemical analyses. Untreated mice with I/R injury were used as controls. RESULTS: Hydrogen gas showed protective effects associated with a reduction in inflammatory cell infiltration (neutrophils, macrophages, and lymphocytes), a reduced area of damaged muscle, maintenance of normal muscle cells, and replacement of damaged muscle cells with neoplastic myocytes. CONCLUSION: Inhalation of hydrogen gas had a protective effect against hindlimb I/R injury in mice, in part by reducing inflammatory cell infiltration and in part by preserving normal muscle cells.

5.
Heliyon ; 10(2): e24672, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304795

RESUMO

The level of TAR DNA-binding protein 43 (TDP-43) in human blood was reported to have potential for use as a specific fluid biomarker, which represents disease-specific pathologies, for TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), which involves the aggregation and deposition of TDP-43 in the nervous system. However, at present, no reliable immunoassay can precisely quantify TDP-43 in human plasma and detect the difference in plasma TDP-43 levels between patients with ALS and controls. We recently developed a novel ultrasensitive immunoassay to quantify TDP-43 in human plasma, and in this study, we analytically validated this assay for application as a diagnostic biomarker for TDP-43 proteinopathies. The novel TDP-43 assay was assessed for the limit of detection, lower limit of quantification, intra- and interassay variation, linearity, parallelism, and analytical spike recoveries. Additionally, 17 pilot plasma samples obtained from patients with ALS and age-matched controls were analyzed using the assay. Our novel TDP-43 assay showed sufficient analytical performance to quantify TDP-43 in human plasma, with high sensitivity (LOD and LLOQ of 0.109 and 0.759 pg/mL, respectively) and high intra- and interassay precision (%CV) below 15 %. The experimental results for spike recovery, parallelism, and dilution linearity were also acceptable. In addition, despite a small sample size, significant differences in the plasma levels of TDP-43 were found between patients with ALS and controls (ALS, 66.63 ± 20.52 pg/mL; control, 42.70 ± 23.06 pg/mL, p = 0.0330). These results support that our novel TDP-43 assay is a reliable and innovative method for the quantification of TDP-43 in human plasma and can be a potential blood-based biomarker for the diagnosis of TDP-43 proteinopathies. Further large-scale studies are warranted to validate its usefulness.

6.
PLoS Biol ; 22(1): e3002445, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163325

RESUMO

Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.


Assuntos
Antagonistas da Serotonina , Serotonina , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Receptor 5-HT1B de Serotonina , Antagonistas da Serotonina/farmacologia , Macaca , Animais
7.
FEBS Open Bio ; 14(2): 165-180, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37746832

RESUMO

Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Camundongos , Animais , Humanos , Proteínas tau/metabolismo , Microscopia Crioeletrônica , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo
8.
Neuroimage Clin ; 41: 103560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147791

RESUMO

In Alzheimer's disease (AD), aggregated abnormal proteins induce neuronal dysfunction. Despite the evidence supporting the association between tau proteins and brain atrophy, further studies are needed to explore their link to neuronal dysfunction in the human brain. To clarify the relationship between neuronal dysfunction and abnormal proteins in AD-affected brains, we conducted magnetic resonance spectroscopic imaging (MRSI) and assessed the neurofilament light chain plasma levels (NfL). We evaluated tau and amyloid-ß depositions using standardized uptake value ratios (SUVRs) of florzolotau (18F) for tau and 11C-PiB for amyloid-ß positron emission tomography in the same patients. Heatmaps were generated to visualize Z scores of glutamate to creatine (Glu/Cr) and N-acetylaspartate to creatine (NAA/Cr) ratios using data from healthy controls. In AD brains, Z score maps revealed reduced Glu/Cr and NAA/Cr ratios in the gray matter, particularly in the right dorsolateral prefrontal cortex (rDLPFC) and posterior cingulate cortex (PCC). Glu/Cr ratios were negatively correlated with florzolotau (18F) SUVRs in the PCC, and plasma NfL levels were elevated and negatively correlated with Glu/Cr (P = 0.040, r = -0.50) and NAA/Cr ratios (P = 0.003, r = -0.68) in the rDLPFC. This suggests that the abnormal tau proteins in AD-affected brains play a role in diminishing glutamate levels. Furthermore, neuronal dysfunction markers including Glu/tCr and NAA/tCr could potentially indicate favorable clinical outcomes. Using MRSI provided spatial information about neural dysfunction in AD, enabling the identification of vulnerabilities in the rDLPFC and PCC within the AD's pathological context.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Creatina/metabolismo , Estudos de Casos e Controles , Imageamento por Ressonância Magnética , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/patologia , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética , Biomarcadores/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
9.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38076986

RESUMO

To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate a dissociable contribution of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.

10.
J Alzheimers Dis ; 96(3): 1253-1265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980663

RESUMO

BACKGROUND: Deterioration of the oral environment is one of the risk factors for dementia. A previous study of an Alzheimer's disease (AD) model mouse suggests that tooth loss induces denervation of the mesencephalic trigeminal nucleus and neuroinflammation, possibly leading to accelerated tau dissemination from the nearby locus coeruleus (LC). OBJECTIVE: To elucidate the relevance of oral conditions and amyloid-ß (Aß) and tau pathologies in human participants. METHODS: We examined the number of remaining teeth and the biofilm-gingival interface index in 24 AD-spectrum patients and 19 age-matched healthy controls (HCs). They also underwent positron emission tomography (PET) imaging of Aß and tau with specific radiotracers, 11C-PiB and 18F-PM-PBB3, respectively. All AD-spectrum patients were Aß-positive, and all HCs were Aß-negative. We analyzed the correlation between the oral parameters and radiotracer retention. RESULTS: No differences were found in oral conditions between the AD and HC groups. 11C-PiB retentions did not correlate with the oral indices in either group. In AD-spectrum patients, brain-wide, voxel-based image analysis highlighted several regions, including the LC and associated brainstem substructures, as areas where 18F-PM-PBB3 retentions negatively correlated with the remaining teeth and revealed the correlation of tau deposits in the LC (r = -0.479, p = 0.018) primarily with the hippocampal and neighboring areas. The tau deposition in none of the brain regions was associated with the periodontal status. CONCLUSIONS: Our findings with previous preclinical evidence imply that tooth loss may enhance AD tau pathogenesis, promoting tau spreading from LC to the hippocampal formation.


Assuntos
Doença de Alzheimer , Perda de Dente , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau , Perda de Dente/complicações , Perda de Dente/diagnóstico por imagem
11.
EJNMMI Radiopharm Chem ; 8(1): 31, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853253

RESUMO

BACKGROUND: Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS: (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/µmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS: We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.

12.
Ann Neurol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703428

RESUMO

OBJECTIVE: Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS: The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS: Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION: We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.

13.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620158

RESUMO

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Assuntos
Canais Iônicos , Primatas , Animais , Masculino , Reprodutibilidade dos Testes , Imagem Multimodal , Macaca
14.
Eur J Nucl Med Mol Imaging ; 50(13): 3928-3936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581725

RESUMO

PURPOSE: The topological distribution of dopamine-related proteins is determined by gene transcription and subsequent regulations. Recent research strategies integrating positron emission tomography with a transcriptome atlas have opened new opportunities to understand the influence of regulation after transcription on protein distribution. Previous studies have reported that messenger (m)-RNA expression levels spatially correlate with the density maps of serotonin receptors but not with those of transporters. This discrepancy may be due to differences in regulation after transcription between presynaptic and postsynaptic proteins, which have not been studied in the dopaminergic system. Here, we focused on dopamine D1 and D2/D3 receptors and dopamine transporters and investigated their region-wise relationship between mRNA expression and protein distribution. METHODS: We examined the region-wise correlation between regional binding potentials of the target region relative to that of non-displaceable tissue (BPND) values of 11C-SCH-23390 and mRNA expression levels of dopamine D1 receptors (D1R); regional BPND values of 11C-FLB-457 and mRNA expression levels of dopamine D2/D3 receptors (D2/D3R); and regional total distribution volume (VT) values of 18F-FE-PE2I and mRNA expression levels of dopamine transporters (DAT) using Spearman's rank correlation. RESULTS: We found significant positive correlations between regional BPND values of 11C-SCH-23390 and the mRNA expression levels of D1R (r = 0.769, p = 0.0021). Similar to D1R, regional BPND values of 11C-FLB-457 positively correlated with the mRNA expression levels of D2R (r = 0.809, p = 0.0151) but not with those of D3R (r = 0.413, p = 0.3095). In contrast to D1R and D2R, no significant correlation between VT values of 18F-FE-PE2I and mRNA expression levels of DAT was observed (r = -0.5934, p = 0.140). CONCLUSION: We found a region-wise correlation between the mRNA expression levels of dopamine D1 and D2 receptors and their respective protein distributions. However, we found no region-wise correlation between the mRNA expression levels of dopamine transporters and their protein distributions, indicating different regulatory mechanisms for the localization of pre- and postsynaptic proteins. These results provide a broader understanding of the application of the transcriptome atlas to neuroimaging studies of the dopaminergic nervous system.


Assuntos
Encéfalo , Dopamina , Humanos , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
15.
Des Monomers Polym ; 26(1): 190-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426066

RESUMO

The donor-acceptor type π-conjugated polymers having heterole units were prepared by the reaction of a regioregular organometallic polymer having both reactive titanacyclopentadiene and electron-donor thiophene-2,5-diyl units in the main chain with electrophiles such as diphenyltin dichloride, dichlorophenylphosphine, and diiodophenylarsine. For example, a polymer having electron-accepting phosphole unit was obtained in 54% yield whose number-average molecular weight (Mn) and molecular weight distribution (Mw/Mn) were estimated as 3,000 and 1.9, respectively. The obtained polymer exhibits a high highest occupied molecular orbital (HOMO) and low lowest unoccupied molecular orbital (LUMO) energy levels (-5.13 eV and -3.25 eV, respectively) due to the electron-donating thiophene and electron-accepting phosphole units. Reflecting upon the alternating structure of thiophene and phosphole, the polymer exhibits a band gap energy level (Eg) of 1.78 eV which is narrower than that of a derivative of poly(thiophene) (Eg = 2.25 eV).

16.
Alzheimers Dement (Amst) ; 15(3): e12454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424964

RESUMO

INTRODUCTION: Recently, an increasing number of tau tracers have become available. There is a need to standardize quantitative tau measures across tracers, supporting a universal scale. We developed several cortical tau masks and applied them to generate a tau imaging universal scale. METHOD: One thousand forty-five participants underwent tau scans with either 18F-flortaucipir, 18F-MK6240, 18F-PI2620, 18F-PM-PBB3, 18F-GTP1, or 18F-RO948. The universal mask was generated from cognitively unimpaired amyloid beta (Aß)- subjects and Alzheimer's disease (AD) patients with Aß+. Four additional regional cortical masks were defined within the constraints of the universal mask. A universal scale, the CenTauRz, was constructed. RESULTS: None of the regions known to display off-target signal were included in the masks. The CenTauRz allows robust discrimination between low and high levels of tau deposits. DISCUSSION: We constructed several tau-specific cortical masks for the AD continuum and a universal standard scale designed to capture the location and degree of abnormality that can be applied across tracers and across centers. The masks are freely available at https://www.gaain.org/centaur-project.

17.
Sci Rep ; 13(1): 11655, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468523

RESUMO

Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.


Assuntos
Transtorno Autístico , Glutamina , Masculino , Adulto , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Transtorno Autístico/metabolismo , Astrócitos/metabolismo , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo
18.
Int J Neuropsychopharmacol ; 26(7): 474-482, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37279545

RESUMO

BACKGROUND: Central serotonin (5-hydroxytryptamine [5-HT]) neurotransmission has been implicated in the etiology of depression. Most antidepressants ameliorate depressive symptoms by increasing 5-HT at synaptic clefts, but their effect on 5-HT receptors has yet to be clarified. 11C-WAY-100635 and 18F-MPPF are positron emission tomography (PET) radioligands for 5-HT1A receptors. While binding of both ligands reflects 5-HT1A receptor density, 18F-MPPF biding may also be affected by extracellular 5-HT concentrations. This dual-tracer PET study explored the neurochemical substrates underlying antidepressant effects in patients with depression. METHODS: Eleven patients with depression, including 9 treated with antidepressants, and 16 age- and sex-matched healthy individuals underwent PET scans with 11C-WAY-100635 and 18F-MPPF. Radioligand binding was determined by calculating the nondisplaceable binding potential (BPND). RESULTS: Patients treated with antidepressants showed significantly lower 18F-MPPF BPND in neocortical regions and raphe nuclei, but not in limbic regions, than controls. No significant group differences in 11C-WAY-100635 BPND were found in any of the regions. Significant correlations of BPND between 11C-WAY-100635 and 18F-MPPF were observed in limbic regions and raphe nuclei of healthy controls, but no such associations were found in antidepressant-treated patients. Moreover, 18F-MPPF BPND in limbic regions was significantly correlated with the severity of depressive symptoms. CONCLUSIONS: These results suggest a diversity of antidepressant-induced extracellular 5-HT elevations in the limbic system among depressive patients, which is associated with the individual variability of clinical symptoms following the treatment.


Assuntos
Encéfalo , Serotonina , Humanos , Radioisótopos de Carbono , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Serotonina/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transmissão Sináptica , Receptor 5-HT1A de Serotonina/metabolismo
19.
RSC Med Chem ; 14(5): 858-868, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37252097

RESUMO

The pyridinyl-butadienyl-benzothiazole (PBB3 15) scaffold was used to develop tau ligands with improved in vitro and in vivo properties for imaging applications to provide insights into the etiology and characteristics of Alzheimer's disease. The photoisomerisable trans-butadiene bridge of PBB3 was replaced with 1,2,3-triazole, amide, and ester moieties and in vitro fluorescence staining studies revealed that triazole derivatives showed good visualisation of Aß plaques, but failed to detect the neurofibrillary tangles (NFTs) in human brain sections. However, NFTs could be observed using the amide 110 and ester 129. Furthermore, the ligands showed low to high affinities (Ki = >1.5 mM-0.46 nM) at the shared binding site(s) with PBB3.

20.
J Clin Lab Anal ; 37(6): e24877, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003619

RESUMO

BACKGROUND: Determination of the erythrocyte sedimentation rate (ESR) by measurement of erythrocyte aggregation is an alternative to the Westergren method and can be performed rapidly. However, its principle is opaque and the ESR values obtained can deviate from Westergren method values (WG ESR) due to hematocrit. Furthermore, WG ESR is affected by particle size, but no studies have examined the effect of individual mean corpuscular volumes (MCVs). METHODS: Simultaneous measurement of the erythrocyte aggregation index (AI) over a 5-s interval and determination of the complete blood count in 80 µL blood from 203 patients were performed (hematocrit, 21.4%-52.3%; MCV, 62.7-114.1 fL). ESR values were calculated with the hematocrit-corrected AI (HAI) for comparison with WG ESR. We improved the calculation formula by using MCV. RESULTS: The sedimentation velocity of a single erythrocyte in the samples agreed well with an exponential function of HAI. ESR values calculated using HAI showed excellent correlation with WG ESR (r = 0.899, p < 0.001; Bland-Altman analysis: bias 2.76, limits of agreement (LOA) -24.5 to 30.0), but the difference between the calculated ESR and WG ESR increased with decreasing MCV. Calculation of ESR considering both HAI and MCV eliminated the MCV-dependent deviation and improved the correlation with WG ESR (r = 0.920, p < 0.001, bias -2.17, LOA -24.6 to 20.3). CONCLUSION: Calculation using HAI and MCV can rapidly provide ESR values that are highly correlated with WG ESR in clinical specimens over a wide range of hematocrit and MCV values.


Assuntos
Índices de Eritrócitos , Eritrócitos , Humanos , Hematócrito , Sedimentação Sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...